In answer to your oil number question:
The viscosity of any oil changes with temperature. The higher the temperature, the lower the viscosity—the oil thins out. On the flipside, the lower the temperature the higher the viscosity. Because of this, the Society of Automotive Engineers (SAE) has established a series of viscosity classifications that establish oil performance at 100 and 0 degrees Celsius (212 and 32 degrees Fahrenheit, respectively).
Highs and Lows
Low-viscosity oils flow better than high-viscosity ones—the lighter-weight fluid is easier to pump and therefore circulates faster through the engine's various galleries. Low-viscosity oils also maintain a lower oil pressure, but the oil pump delivers a greater volume through the galleries than it would with thicker (higher-viscosity) oils. Heavier oils also tend to operate at higher temperatures because the oil pump has to work harder to force the lubricant through the system. Oil does not compress readily, so the added pressure increases the temperature. In the end, high-viscosity oils maintain a higher oil pressure, but the pump delivers a smaller volume of oil.
Multigrades
Multigrade oils typically begin as base oils, such as 10W. Then viscosity-index modifiers (polymers) are added in an effort to stabilize the viscosity. This allows a 10W40 oil to flow like a 10W at cold temperatures and a 40W at higher temperatures.
The viscosity of any oil changes with temperature. The higher the temperature, the lower the viscosity—the oil thins out. On the flipside, the lower the temperature the higher the viscosity. Because of this, the Society of Automotive Engineers (SAE) has established a series of viscosity classifications that establish oil performance at 100 and 0 degrees Celsius (212 and 32 degrees Fahrenheit, respectively).
Highs and Lows
Low-viscosity oils flow better than high-viscosity ones—the lighter-weight fluid is easier to pump and therefore circulates faster through the engine's various galleries. Low-viscosity oils also maintain a lower oil pressure, but the oil pump delivers a greater volume through the galleries than it would with thicker (higher-viscosity) oils. Heavier oils also tend to operate at higher temperatures because the oil pump has to work harder to force the lubricant through the system. Oil does not compress readily, so the added pressure increases the temperature. In the end, high-viscosity oils maintain a higher oil pressure, but the pump delivers a smaller volume of oil.
Multigrades
Multigrade oils typically begin as base oils, such as 10W. Then viscosity-index modifiers (polymers) are added in an effort to stabilize the viscosity. This allows a 10W40 oil to flow like a 10W at cold temperatures and a 40W at higher temperatures.
Comment